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LE'ITER TO THE EDITOR 

Anomalous acoustic behaviour and backbone structure of 
percolation clusters 

T Ohtsuki and T Keyes 
Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA 

Received 24 October 1983 

Abstract. A real-space renormalisation group method is used to investigate acoustic 
properties of percolation lattices in the vicinity of the percolation threshold. Scaling form 
and expressions for critical exponents x ,  y describing the sound velocity are derived. The 
existence of an anomalous dispersion relation is elucidated. Dimensionalities dT and d, 
which represent the geometrical structure of cluster backbones are introduced. The 
exponents x ,  y and the dimensionalities dT, d, are expressed in terms of other exponents 
Y, f i ,  1, s and Be for percolation and their explicit values are evaluated from known estimates 
for Y, f i ,  t, s and fie. A geometrical picture of the backbone structure is obtained in terms 
of the dimensionalities. 

Dynamical properties of percolation lattices are a subject of rapidly growing interest. 
The fractal and dendritic structure of percolation clusters causes various types of 
anomalous behaviour near the percolation threshold pc. For example, the mean-square 
displacement ( R 2 ( t ) )  at the threshold p =pc  varies as ( R 2 ( t ) ) X  t X  where ,y is a critical 
exponent less than unity (de Gennes 1976a, Ben-Avraham and Havlin 1982, Gefen 
et a1 1983). Recently Alexander and Orbach (1982) reported that this anomalous 
diffusion yields the fractal (fracton) dimensionality for the density of states (see also 
Rammal and Toulouse 1983). Harris and Stinchcombe (1983) derived anomalous 
dispersion relations and dynamic critical exponents for dilute ferromagnets. These 
facts suggest that the lattice vibrations of percolation lattices also show anomalous 
behaviour. In spite of both theoretical and practical importance, however, little is 
known about the acoustic behaviour of percolation clusters. 

On the other hand, the understanding of cluster structure is indispensable to study 
not only acoustic but also magnetic properties of dilute ferromagnets, the conductivity 
of random resistor networks etc. Since only the backbone of the infinite cluster is 
responsible for some of these properties, knowledge of the backbone structure is of 
particular significance. Various pictures have been proposed in the literature (Skal 
and Shklovskii 1974, de Gennes 1976b, Stanley 1977, Kirkpatrick 1978, Coniglio 
1982). 

The purpose of this letter is twofold: first, to investigate acoustic properties of 
percolation lattices such as sound velocity and dispersion relation, in particular, their 
critical behaviour in the vicinity of the percolation threshold, and second, to calculate 
the dimensionalities for cluster backbones and clarify their geometrical structure. 

First, we derive the scaling form and expressions of critical exponents x, y for the 
sound velocity c, on the basis of a real-space renormalisation group (RSRG) method 
which is frequently useful for percolation problems (Stanley et a1 1982, Ohtsuki and 
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Keyes 1983). Then an anomalous dispersion relation is obtained. Dimensionalities 
dT and dL are introduced and their geometrical meaning is given. Lastly, we express 
x, y, dT and dL in terms of other critical exponents v, p, t, s and PB (Stauffer 1,979, 
Straley 1978, Kirkpatrick 1978, Stanley 1977). 

We consider sound propagation on a harmonic lattice with lattice constant 1, mass 
Mi of the ith particle and force constant T i j  between the nearest-neighbour pair i, j .  
Here two classes of bond percolation problems are treated, that is, M i = m  for all i 
and T i j  is an independent random variable with a binary probability distribution 

Case (a) is related to the problem of the conductivity of a random resistor network 
composed of conductor and insulator bonds and (b) to that composed of superconductor 
and conductor bonds. Case (a) corresponds to a solid disordered by vacancies and 
might be a good model just below the melting transition. Case (b) might represent a 
liquid with solid-like ‘icebergs’. We expect the speed of sound c to vanish (diverge) 
as pc is approached from above (below) in case (a) ((b)) and only consider case (a) 

In both cases, we apply the RSRG method in the usual way (Stanley er a1 1982). 
Groups of sites and bonds are combined into supersites and bonds which form a new 
renormalised lattice with lattice constant 

for P 3 pc ( P  4 pC). 

I’ = bl. (3) 
Under the requirement that acoustic properties of the lattices are kept invariant, we 
assume the existence of the renormalisation transformation such that on the new lattice, 
the mass MI of a particle is the same for all particles MI = m’ and there is only the 
nearest-neighbour force whose force constant r:, is also an independent random 
variable with a binary probability distribution 

Generally the existence of such a transformation is not obvious, but near the percolation 
threshold it is thought to be verified by the self-similarity and the scale invariance of 
percolation clusters (Kapitulnik er a1 1983). The dimensional analysis, namely the 
II-theorem, gives recursion relations of the form 

where w, f and h are smooth (once differentiable) functions of p and b normalised 
so that w =f = h = 1 at p = 1 and d is the Euclidean dimensionality of the system. 
Similarly, we get 

c(m, Y ,  1, p ;  k )  = (Y/m)”’lc*(p,  Ik) ,  (9) 
where k is a wavevector and c* is the normalised dimensionless sound velocity. 
Substituting (3) and (6148) into (9) and the requirement 

c(m, Y,  1, P ;  k )  = c ( ” ,  7‘9 1 ’ 7  P ‘ ;  k ) ,  (10) 
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we obtain the recursion relation for c* 

c*(p ,  K )  = V(p, b ) / h ( p ,  b)I’/’c*( W(P, b ) ,  bK) ,  (11) 

where K = lk is the normalised dimensionless wavevector. 
In the vicinity of the percolation threshold as I E ~  = Ip-pcl/pc<< 1,  the recursion 

relation (1 1) gives the scaling form of c* and the expressions of accompanying critical 
exponents. In this region, (6)-(8) are expressed as 

where w‘ = aw/ap  and the subscript c denotes the quantity at p = pc.  Substitution of 
these equations in (1 1) leads to 

c * ( E ,  K )  = ( fc /hC)’”c*(~w~,  bK) .  

C * ( E ,  K)/IEI” = C * ( S ,  K/ls/&l-”)/lSl” 

(15) 

(16) 

Iterating this procedure n times and putting S = E (  w;)”, we have 

where x is the critical exponent defined by 

x _= ;In( hc/fc)/ln wS 

and Y is the exponent for the coherence length 6 defined by ,$a IEI -”  and given by 
v=lnb/lnwi (Stauffer 1979). Equation (16) is valid for any E ,  s ( n )  and K such that 
1 >> IS1 > I E ~  f 0. Thus we can derive the scaling form of c* 

C * ( E ,  K )  = 1ElXF*(Kl&1-”) =e-“/” F*(K5),  (18) 
where subscript + or - represents above or below the threshold and corresponds to 
case (a) or (b). 

The limit of (15) when K + 0 or E + 0 yields 

with the critical exponent y given by 

y = $ln( hc/ fc)/lnb = XI v. (21) 
Combining (18) with (19) and (20), we find that in the limit Z+O or Z+W, F,(Z) 
is proportional to Z?‘ or Z y ,  respectively. Then we have 

c*( E ,  K )  cc I E l X K O  (K<< 6-’L (22) 

c*( E ,  K )  0: E O K Y  (&-‘<<K<< 1). (23) 
Equation (23) leads to the anomalous dispersion relation 

= c*K a K’+Y ( (-‘<<K<< 1) (24) 
where SZ = w / w o  = o( m /  y)”’ is the normalised dimensionless frequency. This relation 
is also derived as follows. Let cf be the frequency-dependent sound velocity. As a 
result of the dimensional analysis, we have 

(25) cdm, Y, 1, p ;  0) = ( Y / m ) ” ’ U ( p ,  (m/Y)’ / ’w) .  
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Since a similar relationship to (10) also exists for cf, we obtain the recursion relation 
for c,*, 

c,*(p,  R) = Lf(p,  b ) l h ( p ,  b)l'/'c,* ( w ( P ,  b ) ,  [ h b ,  b)/f(p, b)I'''bfi). (26) 

At p = pc ,  equation (26) yields 

c ,*(p , ,  R)KRY/('+Y). (27) 

Comparing (20) and (27), we find the dispersion relation (24), because c* and c,* 
represent the same physical quantity. 

As mentioned before, investigation of the backbone structure of percolation clusters 
has a significant meaning. To this end, we here consider acoustic properties of only 
cluster backbones without dead ends. Concretely, we treat the percolation lattice in 
case (a) where bonds with a force constant y belonging to dead ends are replaced by 
those with zero force constant. After the replacement, the value of the probability p 
alters but physical quantities are still functions of the initial value, because the replace- 
ment is a univalent operation. Since the cluster backbone itself is also self-similar 
(Kirkpatrick 1978), the preceding discussions are considered to hold for this case. 
That is, the normalised sound velocity cg varies as 

c ; ( E , K ) = / E I * B K O  (K<< & - I ) >  (28) 

C g ( E , K ) K E ° K y B  (e-'<< K << l ) ,  (29) 

with ye = xB/ v and the dispersion relation is given by 

= c$K a K l + Y B  ( ( - I < <  K<< 1). (30) 
In normal d-dimensional lattices, the number of modes N ( K )  with wavevectors 

less than K satisfies N ( K )  a K d .  In the low frequency limit, the sound velocity usually 
becomes independent of K and the frequency spectrum g(R) is given by 

(31) 

where Nf(R) = N(R/c*) is the number of modes with frequencies less than R. For 
K << & - I ,  namely, R<< cT, ( E ,  O)(-'= & - ( l + Y ~ ) ,  equation (31) is applicable and we have 

g(R) = dNf(R)/dR a Rd-' 

gB(n) a Rd-' (a<< &-f'+YB) 1. (32) 
In contrast, when & - I < <  K << 1 and , $ - ( ' + Y ~ )  << R << 1, the fractal structure of cluster 

backbones and the anomalous dispersion relation lead to an anomalous frequency 
spectrum. Since modes with finite velocity are generated only on the cluster backbone, 
we get 

N (  K ) a K d B  (33) 

where dB = d - P B /  v is the fractal dimensionality of the cluster backbones (Kirkpatrick 
1978). From (30), it follows that 

&(a) a R+' ((-('+'B)<< R<< 1) (34) 

dT= dB/(1+ ye ) .  (35) 

with the dimensionality dT defined by 

The geometrical meaning of the dimensionality dT is considered as follows. In 
general, cluster backbones are not one-dimensional chains but composed of 'links' and 
'blobs' (Stanley 1977, Coniglio 1982). The density of states only on cluster backbones 
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at 1 >> K >> 5-l is just that of these links and blobs. Thus we suggest that the dimensional- 
ity dT represents the effective ‘thickness’ of links and blobs, i.e. backbones. On the 
other hand, the line along links and blobs describes an irregular curve with fractal 
dimension. Since the dimensionality dB contains both effects (thickness and irregular- 
ity), we put 

dB = dr&, (36) 

where dL is the fractal dimensionality for the effective ‘length’ of backbones along 
links and blobs. This decomposition of dB into dT and dL is thought to be useful to 
make the geometrical structure of cluster backbones clearer. 

We’now relate the critical exponents x ,  y and the dimensionality dr with other 
critical exponents for percolation (Stauffer 1979, Straley 1978). In the low-frequency 
limit, the sound velocity is proportional to the square root of the elastic modulus E 
of the lattice and inversely proportional to the square root of the density p of the 
system. Near the percolation threshold, E is considered to vary in the same way as 
the conductivity U of the corresponding resistor network (de Gennes 1976b). In case 
(a), only the infinite cluster vibrates and p satisfies p cc E ~ .  Similarly, we have p a  E’B 

for cB, while in case (b), p has no singularity at the threshold. Since dead ends have 
no contribution to E, we obtain 

(case (a),  E > 0), (37) a & ( f - P ) / 2  

c a I E I - ’ ’ ~  (case (b), E < O ) ,  
& ( f - P , ) / 2  

(38) 

(39) 

where t and s are the critical exponents for the conductivity (+of the conductor-insulator 
network and that of the superconductor-conductor network, respectively. The critical 
exponents x and y are expressed as 

X = ;( t - p ) ,  Y = ( t  - P)/2V (case (a)), (40) 

7 = -s/2v (case (b)), (41) p=-’ 

XB = k( t -  P B ) ,  YB = (f-PB)/2 v, (42) 

(43) 

2 s, 

and the dimensionality dT is written as 

= d ~ / [ l  + ( t -  P B ) / ~ V ] .  

The exponent 1 + y = 1 +(t’-P)/2u for the anomalous dispersion relation is just half 
of that for dilute ferromagnets derived by Harris and Stinchcombe (1983). 

The dimensionality dT corresponds to the fracton dimensionality d introduced by 
Alexander and Orbach (1982). They considered diffusion on clusters and then derived 
d. The mean-square displacement (S’)  along links and blobs satisfies (S2)a t ,  irrespec- 
tive of thickness dr, and the mean-square displacement ( R 2 )  in the Euclidean space 
is related to (S‘ )  as (R2)4a( s2 ) ,  namely ( R 2 ) a  tildL. Since d =  dB in this case, their 
expression for d becomes equivalent to (36). Equation (43) shows that the critical 
exponent for the diffusion coefficient DB only on the backbone of the infinite cluster 
is given by f - &  However, it should be noted that t -PB is the exponent for DB and 
is different from that for the diffusion coefficient on the whole cluster, where dead 
ends also play some roles (Ohtsuki and Keyes 1983). 

By using known estimates for U, P,  t, s and PB (Stauffer 1979, Straley 1978, 
Kirkpatrick 1978, Stanley 19771, we can calculate explicit values of the exponents x, 
y and the dimensionalities dr, dL. The results are listed in table 1. 
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Table 1. Critical exponents and dimensionalities. 

1 1.0 0 1.0 0 -0.5 -0.5 1.0 1.0 1.0 
2 1.35 0.14 1.2 1.1 0.5 0.5 0.4 -0.55 -0.4 1.6 1.3 1.3 
3 0.84 0.4 1.7 0.7 0.9 0.65 0.8 -0.35 -0.4 2.0 1.3 1.5 
4 0.7 0.5 2.4 0.6 1.1 0.95 1.4 -0.3 -0.4 2.4 1.3 1.9 
5 0.6 0.7 2.7 
6 0.5 1.0 3.0 0 1.0 2.0 0 0 2.0d 1.0 2.0 

a Stauffer (1979). 
Straley (1978). 
Kirkpatrick (1978). 
Stanley (1977). 

Above six dimensions, the dimensionality dT is equal to unity and dL is equal to 
two. These values are compatible with the picture proposed by Skal and Shklovskii 
(1974) for random resistor networks, i.e. one-dimensional channels with crosslinks, 
because in these dimensions, excluded volume effects are also negligible (de Gennes 
1972) and one-dimensional channels should make a pure random walk. It should be 
emphasised that for 1 < d < 6 ,  however, their picture is not applicable. At 2 s d C 4, 
dT is about 1.3 and more than unity. On the other hand, dL is nearly equal to that 
for the self-avoiding walk of one-dimensional chains (de Gennes 1972). These results 
support a nodes, links and blobs model of cluster backbones proposed recently instead 
of the simple nodes and links model (Stanley 1977, Coniglio 1982). 

This work was partly supported by the NSF, grant No CHE81-11422, by a Dreyfus 
Teacher-Scholar grant and by the Petroleum Research Fund. 
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